12th Standard - Physics Tutorial - NCERT - CBSE Pattern
We will cover below chapters.- ELECTRIC CHARGES AND FIELDS
- ELECTROSTATIC POTENTIAL AND CAPACITANCE
- CURRENT ELECTRICITY
- MOVING CHARGES AND MAGNETISM
- MAGNETISM AND MATTER
- ELECTROMAGNETIC INDUCTION
- ALTERNATING CURRENT
- ELECTROMAGNETIC WAVES
- RAY OPTICS AND OPTICAL INSTRUMENTS
- WAVE OPTICS
- DUAL NATURE OF RADIATION AND MATTER
- ATOMS
- NUCLEI
- SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS
ELECTRIC CHARGES AND FIELDS
1.1 Introduction
1.2 Electric Charge
Electric charge a property of a matter due to which it experiences and produces electric and magnetic field. Types of charges- positive charge - Electron deficiency
- negative charge - Excess Electron
1.3 Conductors and Insulators
1.4 Basic Properties of Electric Charge
- Charge is a scalar quantity
- Charge is transferrable
- Charge is alway associated with mass
- Charge produces electric and magnetic field
- Like charges repel each other. Unlike charges attract each other
- Charge is conserved - Charge can neither be created nor destroyed!
Charge on 1 proton is +1.6×10−19C
Charge on 1 neutron is 0.
Mass of 1 electron is me=9.1×10−31kg
Mass of 1 proton is mp=1.67×10−27kg
Mass of 1 neutron is mn=1.68×10−27kg
is +1.6×10−21C charge possible? and answer is No because+1.6×10−21C is equal to 100+1.6×10−19C. We can not have a charge that is a fraction of Electron!
1.5 Coulomb's Law
There is a force between 2 charges which can be calculated using below formula! It is also called as Coulomb's law!F=k⋅r2q1⋅q2
Here k is Coulomb Constant and it's value is 4πϵ01. Epsilon 0 is a permittivity of free space and it's value is 8.854×10−12 C2N−1m−2.This law is valid only for point charges! 1.6 Forces between Multiple Charges
Force is a vector!Properties of forces
- Force is conservative
- Force is central
- Force follows inverse square law
- Force depens on medium unlike gravitational force!
- It is infinite ranged force
Superposition of Forces
When multiple charges interact with each other, you will need to take the vector sum of all forces!Relative permittivity
Ratio of permittivity of medium and permittivity of vaccum! If F is a force between 2 charges in vaccum, then force between same charges in medium of relative permittivity(ϵr) is ϵrF1.7 Electric Field
Electric field of a charged particle is an invisible region surrounding the charged particle in which it can exert an electrical force on another charged particle! There can be other charged particles inside the electric field. So 2 electric fields can overlap and electric lines of force can superpose! Electric field intensity is the amount of force experienced by unit charged particles when it is placed in the electric field.E(r)=qF(r)
F(r)=E(r)⋅q
Electric field intensity due to different charges distribution
- Point charge
- Line charge
- Ring Charge
- Hollow Sphere
- Solid Sphere
- Sheet Charge
- Dipole (axial and equitorial) - System of 2 equal and opposite charges seperated by a small fixed distance is called as dipole!
Point Charge
Electric Intensity of a point (Force experience by the point in field) in a Electric field generated by a Point Charge (q) can be calculated using below formula.E=k⋅r2q
Line charge
To find the electric field intensity (E) at a point in the electric field generated by a linear charge density (lambda) along a straight line, you can use the following formula:r2kλ
Where: - E is the electric field intensity at the point (measured in volts per meter, V/m).
- k is Coulomb's constant.
- lambda is the linear charge density, which is the charge per unit length along the line (measured in coulombs per meter, C/m).
- r is the distance from the line charge to the point where you want to find the electric field intensity (measured in meters, m).
This formula is applicable when you want to calculate the electric field intensity at a point due to a linear charge distribution along a straight line. It describes how the electric field intensity decreases with distance (r) from the line charge.
Ring Charge
To find the electric field intensity (E) at a point on the axis of a uniformly charged ring with total charge Q, you can use the following formula:E=(x2+R2)3/2kQx
Where: - E is the electric field intensity at the point on the axis (measured in volts per meter, V/m). - k is Coulomb's constant - Q is the total charge of the ring (measured in coulombs, C). - x is the distance along the axis from the center of the ring to the point where you want to find the electric field intensity (measured in meters, m). - R is the radius of the ring (measured in meters, m). This formula is applicable when you want to calculate the electric field intensity at a point on the axis of a uniformly charged ring due to the presence of the ring charge. It describes how the electric field intensity varies with distance (x) from the center of the ring.Hollow Sphere
Solid Sphere
Sheet Charge
Dipole
Axial
Equitorial
Dipole in External field
Uniform external field, Non Uniform external field You can watch https://www.youtube.com/watch?v=MVvHdH6n2VE by Anupam Sir from Vedantu for more details!1.8 Electric Field Lines
Electric field lines are imaginary lines of electric forces through a region of empty space so that tangent at any point on the line is in the direction of the electric field vector at that point. Electric field lines emerge from positive charge and terminate at negative charge if negative charge exists!1.9 Electric Flux
Electric flux is the measure of Electric Field through a given surface. Formula to find the Electric flux is given below.ϕ=E⋅A
It is assumed that Electric field (E) is constant and A is a surface area through which flux is to be measured!1.10 Electric Dipole
1.11 Dipole in a Uniform External Field
1.12 Continuous Charge Distribution
1.13 Gauss's Law
Gauss's Law states that flux of a charge enclosed inside a body is given by below formula.ϕ=ϵ0q
1.14 Applications of Gauss's Law
ELECTROSTATIC POTENTIAL AND CAPACITANCE
2.1 Introduction
Electric charge has intensity and potential! Potential Energy is the negative work done by conservative force! Work done by external force is equal to negative work done by conservative force!2.2 Electrostatic Potential
2.3 Potential due to a Point Charge
2.4 Potential due to an Electric Dipole
2.5 Potential due to a System of Charges
2.6 Equipotential Surfaces
2.7 Potential Energy of a System of Charges
2.8 Potential Energy in an External Field
2.9 Electrostatics of Conductors
2.10 Dielectrics and Polarisation
2.11 Capacitors and Capacitance
2.12 The Parallel Plate Capacitor
2.13 Effect of Dielectric on Capacitance
2.14 Combination of Capacitors
2.15 Energy Stored in a Capacitor
CURRENT ELECTRICITY
3.1 Introduction
3.2 Electric Current
3.3 Electric Currents in Conductors
3.4 Ohm's law
3.5 Drift of Electrons and the Origin of Resistivity
3.6 Limitations of Ohm's Law
3.7 Resistivity of Various Materials
3.8 Temperature Dependence of Resistivity
3.9 Electrical Energy, Power
3.10 Cells, emf, Internal Resistance
3.11 Cells in Series and in Parallel
3.12 Kirchhoff's Rules
3.13 Wheatstone Bridge
MOVING CHARGES AND MAGNETISM
4.1 Introduction
4.2 Magnetic Force
4.3 Motion in a Magnetic Field
4.4 Magnetic Field due to a Current Element, Biot-Savart Law
4.5 Magnetic Field on the Axis of a Circular Current Loop
4.6 Ampere's Circuital Law
4.7 The Solenoid
4.8 Force between Two Parallel Currents, the Ampere
4.9 Torque on Current Loop, Magnetic Dipole
4.10 The Moving Coil Galvanometer
MAGNETISM AND MATTER
5.1 Introduction
5.2 The Bar Magnet
5.3 Magnetisation and Magnetic Intensity
5.4 Magnetic Properties of Materials
ELECTROMAGNETIC INDUCTION
6.1 Introduction
6.2 The Experiments of Faraday and Henry
6.3 Magnetic Flux
6.4 Faraday's Law of Induction
6.5 Lenz's Law and Conservation of Energy
6.6 Motional Electromotive Force
6.7 Inductance
6.8 AC
ALTERNATING CURRENT
7.1 Introduction
7.2 AC Voltage Applied to a Resistor
7.3 Representation of AC Current and Voltage by Rotating Vectors — Phasors
7.4 AC Voltage Applied to an Inductor
7.5 AC Voltage Applied to a Capacitor
7.6 AC Voltage Applied to a Series LCR Circuit
7.7 Power in AC Circuit: The Power Factor
7.8 Transformers
ELECTROMAGNETIC WAVES
8.1 Introduction
8.2 Displacement Current
8.3 Electromagnetic Waves
8.4 Electromagnetic Spectrum
RAY OPTICS AND OPTICAL INSTRUMENTS
9.1 Introduction
9.2 Reflection of Light by Spherical Mirrors
9.3 Refraction
9.4 Total Internal Reflection
9.5 Refraction at Spherical Surfaces and by Lenses
9.6 Refraction through a Prism
9.7 Optical Instruments
WAVE OPTICS
10.1 Introduction
10.2 Huygens Principle
10.3 Refraction and Reflection of Plane Waves using Huygens Principle
10.4 Coherent and Incoherent Addition of Waves
10.5 Interference of Light Waves and Young's Experiment
10.6 Diffraction
10.7 Polarisation
DUAL NATURE OF RADIATION AND MATTER
11.1 Introduction
11.2 Electron Emission
11.3 Photoelectric Effect
11.4 Experimental Study of Photoelectric Effect
11.5 Photoelectric Effect and Wave Theory of Light
11.6 Einstein's Photoelectric Equation: Energy Quantum of Radiation
11.7 Particle Nature of Light: The Photon
11.8 Wave Nature of Matter
ATOMS
12.1 Introduction
Thomson Model of Atom says that it is like a watermelon and seeds are like electron and red part is proton. But this model could not explain spectral series of Hydrogen Atom and also could not explain the observations in gold foil scattering experiment!12.2 Alpha-particle Scattering and Rutherford's Nuclear Model of Atom
Gold foil was bombarded with alpha particles from Bismuth (Radioactive Source). Alpha particle has 2 proton and 2 electron!Observations in Gold foil experiment
- Most of the Alpha particles went undeflected within 1 degree
- Only 0.14% Alpha particles delected more than 1 degree
- Nearly 1 in 8000 deflected by more than 90 degree
- Hardly any particle returned by 180 degree
- Most of the Alpha particles went straight that means most of the atom space is empty
- Large angle deflection happened due to the positive charge at nucleus
- Nucleus is surrounded by Electrons
- 180 degree relection happened and reason is that When Alpha particle reaches the nuclues, it's kinetic energy gets converted into Potential Energy and due to electrostatic repulsive force, it gets deflected by 180 degree. The Smallest distance upto which alpha particle can reach is called as the distance of closet approach!
Rutherford atomic model limitations
- This model does not explain why electron is not losing energy and collapsing into nucleus.
- Why hydrogen is emitting discrete line spectrum
12.3 Atomic Spectra
12.4 Bohr Model of the Hydrogen Atom
- Centripetal force is provided by Electrostatic Force
- Quantum Condition
- Stationary Orbits
- Frequency Condition
Finding the energy of Hydrogen electron revolving in the orbit!